电动汽车电机驱动系统部分组成

2022-01-10 15:59:20 作者:zhangwenbin

1.驱动电机控制器的结构驱动电机控制器是一种电压型逆变器,它利用IGBT将直流电转换成额定电压为330伏的交流电,其主要功能是控制电动机和发电机根据不同的工况来控制电动机的正反转、功率、扭矩和转速。即控制电机的前进和后退,维持电动车的正常运行。关键部分是IGBT,它实际上是一个大电容。目的是控制电流运行,保证驾驶员能根据自己的意愿输出合适的电流参数。

驱动电机控制器总成由上层、中层和下层组成。上下两层为电机控制单元,中间层为水道冷却控制单元。该总成还包括信号连接器、两个动力电池正负极连接器、三个电机三相线连接器、两个水套连接器等外围附件。电机的结构如下图所示。

2.驱动电机控制器①的功能是控制电机的正反转驱动和正反转发电。②控制电机的功率输出,同时保护电机。③通过CAN与其他控制模块通信,接收和发送相关信号,间接控制车辆上相关系统的正常运行。④制动能量供给控制。⑤内部故障的检测和处理。⑥最大运行速度:额定电压下,最大运行速度为7500r/min。⑦半坡启动功能。⑧防止电机失控和IPM保护。⑨采集P、R、N、D档信号。⑩采集油门深度传感器和刹车深度传感器的信号。

3.绝缘栅双极晶体管的控制原理绝缘栅双极晶体管被认为是电动汽车的核心技术之一。它的功能是转换交流和DC,同时还承担高低压转换的功能。此外,电机回收的交流电流也转化为蓄电池可以充电的电流。IGBT的结构如下图所示。

动力电池组和电机的正负极分别与IGBT模块的输入输出端相连,IGBT的输出电压由主控制器输入的PWM信号控制。在控制器运行过程中,主控制器通过采集和分析加速踏板、制动踏板、车速等传感器信号来控制电机电压的输出。输出方式为向IGBT模块传输PWM信号,采集电机电压、电机电流、电机温度、IGBT模块等反馈信号,保护系统不发生过流、过压、过热。

4.驱动系统控制策略电动汽车行驶过程中,驾驶员根据实际行驶工况,通过操作油门踏板、刹车踏板和变速箱操纵杆来控制电动汽车的速度。不考虑换挡,油门踏板的信号代表驾驶员的指令,所以电动汽车的速度实际上是通过驾驶员的广义闭环速度控制来实现的。

根据油门踏板所代表的给定指令,控制系统可分为开环控制系统、电流闭环控制系统和速度-电流双闭环控制系统。

开环控制系统利用油门踏板信号代表主控制器向IGBT模块传输PWM占空比空比值信号,电路简单,成本低,但当电池电压参数发生变化时,没有自动调节功能,抗干扰能力差,启动加速度低,功率指示低。

电流单闭环控制系统是用油门踏板信号来表示电机的电枢电流,即电机的输出转矩。目前单闭环速度控制系统的主要特点是响应时间短、控制准确、自调节能力强,但这种系统容易出现过流现象,可能导致电机或控制器损坏。

油门踏板信号代表驾驶员期望车速的控制系统称为车速控制系统。如果安装车速传感器检测车速并与期望车速进行比较形成逆控制,称为车速单闭环控制系统。双闭环控制系统动态性能令人满意,油门踏板的位置直接代表了驾驶员的预期车速,直观易懂,起步加速性和动态性好。

动力电机的再生制动:“再生制动”用于电力系统,利用电机产生的动力再利用动能。通常电机通电后开始转动,但当外力带动电机转动时,可以作为发电机发电。因此,利用驱动轮的旋转力驱动电机发电,发电时的阻力可以在给蓄电池充电的同时减速。该系统在制动时与液压制动同时控制再生制动,将减速时作为摩擦热损失的动能完美地回收为驱动能量。在城市中行驶时,反复调速运行具有较高的能量回收效果,因此低速时首先使用再生制动。例如,在城市中行驶100公里可以再生相当于1L汽油的能量。

5.预充电信号回路控制预充电目的:在没有预充电的情况下,主接触器的吸合可能导致过大的电流烧结主接触器,击穿电容器。当钥匙打开时,为了减轻高压电池的影响,电池管理器首先接合预充电接触器来控制继电器。动力电池的高压电通过预充电接触器和两个并联的限流电阻加载到母线的正极。当驱动电机控制器检查到总线正极的电压达到动力电池额定电压的2/3时,它会向电池管理器反馈一个预充电信号。之后,组合仪表的OK灯亮起,电池管理器控制正放电接触器的控制器接通和断开预充电接触器的控制器。

如果有任何故障,请用诊断仪器检查预充电。如果预充电失败,请执行以下操作。①检查电池管理器是否预充电。②从电池管理器的K05连接器后端引出。③检查线束端子M33-25和车身之间的电压。如果没有,更换电池管理器并检查高压电源电路。预充信号电路如下图所示。

6.驱动电机控制器的故障代码

>>点击查看今日优惠<<

    本文导航
    热门文章
    TOP推荐
    相关阅读
    点击加载更多